

Membrane Technology Advances for Base Metal Processes using AMS Technologies

- AMS Technologies is a commercial membrane manufacturer that specializes in the treatment of in-process and wastewater streams
- Following a decade of cutting edge research, our team of scientist developed a unique line of highly durable nanofiltration and ultrafiltration membrane products enabling the treatment of aggressive industrial streams with great benefits to clients

Visit our website www.ChimericalTech.com for more information on our solutions

This memorandum is strictly private & confidential and intended only for those persons it was transmitted to. The information provided herein is proprietary and should not be used without permission from the authors. The data in the memorandum provides general information regarding the company and further due diligence is required.

Nanofiltration Membranes Low-MWCO NF Membranes Low-MWCO NF Membranes in Base-metals Nanofiltration Membranes in Base-metals

Low-MWCO NF Membranes Low-MWCO NF Membranes in Base-metals Nanofiltration Membranes in Base-metals

Nanofiltration (NF) membranes have rejection selectivity: allowing components based on size and charge

Charge-based NF separation lies in the heart of reagent recovery and metal concentration applications

Low-MWCO NF Membranes

Low-MWCO NF Membranes in Base-metals

Nanofiltration Membranes in Base-metals

Low-MWCO membrane is a new product for ultra-pure reagent recovery and no-loss metal concentration

MWCO and rejection = how "strict" is the membrane in stopping components:

- Low MWCO (High rejection) = Hard to escape from concentrate side;
- High MWCO (Low rejection) = Easy to reach permeate side.

		400 Da		200 Da		100 Da	
	Feed	Conc.	Perm.	Conc.	Perm.	Conc.	Perm.
Volume	100	20	80	20	80	20	80
Concentration							
H_2SO_4	10	10.2	10.0	10.8	9.8	11.7	9.6
CuSO ₄	10	44.0	1.5	46.9	0.8	49.6	0.1
Mass							
H_2SO_4	100%	20%	80%	22%	78%	23%	77%
CuSO ₄	100%	88%	12%	94%	6%	99%	1%

Mining and Metals industry impose high stability requirements on membrane

Superior pH stability is mandatory — streams often have high acid, alkali, solvents …

... as well as thermal and pressure stability

Stability	Membrane	MWCO ¹ , daltons	Min. MgSO ₄ Rejection ²	pH range	Example Streams
Acid	A–3011 A–3012 A–3014 A–3017 A–3020	100 180 400 700 1'000	99% 96% 92% 80% 65%	0 - 12 0 - 12 0 - 12 0 - 12 0 - 12 0 - 12	20% H ₂ SO ₄ 20% HCI 30% H ₃ PO ₄
Base	B-4021 B-4022 B-4027 B-4030	100 180 700 1'000	99% 96% 80% 65%	3 — 14 3 — 14 3 — 14 3 — 14 3 — 14	20% NaOH 20% KOH
Solvent	S–3011 S–3012 S–3014	100 180 400	99% 96% 92%	2 — 12 2 — 12 2 — 12	MeOH, Acetone, DMF, etc.

Thermal durability

- No need for cooling;
- Higher flux;
- ✓ up to 80°C (176 °F).

Pressure durability

- Better recovery at high osmotic pressure conditions;
- ✓ Higher flux;
- ✓ AMS up to 70 bar.

Differential pressure stability:

- Can treat viscous streams;
- Higher flexibility in system design;
- ✓ AMS' up to 1 bar.

Low-MWCO NF Membranes

Low-MWCO NF Membranes in Base-metals

Nanofiltration Membranes in Base-metals

Zinc from leach solution concentrated 3 times to improve evaporative crystallization

African zinc miner uses low-MWCO membranes ...

Client	Zinc Producer
Project Region	Middle Africa
Application	NF treatment of leach solution
Treatment Vol.	Approx. 100 m³/day
Design	Single-pass with 100 Da NF membrane

... to reduce evaporator power consumption ...

Feed Solution	Zn:	25 g/L
Treatment Highlights	Zn:	3-times concentration increase with >99% mass recovery in concentrate
Realized Benefits	 Acid recover a) acid core Zinc concert power construction 	very enables reuse, decreasing sumption, <i>b)</i> transportation and handling entration allowed to reduce ~3 times the sumption of evaporative crystallizer

... by concentrating zinc 3 times from 25 to 75 g/L

mg / L	Feed	Permeate	Concentrate	
Volume	100%	67%	33%	
Zn	25 000	257	75 000	
Mg	3 200	26	9 500	
Mn	1 100	34	3 300	
Cu	350	7.7	1 000	
рН	3.7	3.7	3.7	

Electrolyte bleed of Cu-Co mine treated to recover 63% of clean acid and increase concentrate metals

African Cu-Co mine employs NF membranes ...

Client	Copper-cobalt Mine
Project Region	Middle Africa
Application	NF treatment of electrolyte bleed
Treatment Vol.	Approx. 100 m³/day
Design	Single-pass with 100 Da NF membrane

... to recover clean acid and improve precipitation ...

Feed Solution	H₂SO₄ Co:	18 g/L 330 mg/L	
Treatment Highlights	H₂SO₄ Co:	17 g/L in permeate with 63% recovery 960 mg/L in conc. with 99% recovery	
Realized Benefits	 Acid recovery enables reuse, decreasing acid consumption, b) transportation and handling Cobalt concentration increased ~3 times improving precipitation efficiency and reagent consumption 		

... by concentrating cobalt 3 times from 330 to 960 mg/L

mg / L	Feed	Permeate	Concentrate
Volume	100%	67%	33%
H ₂ SO ₄	18 000	17 000	21 000
Со	330	12	960
Cu	2 300	34	6 900
Fe	700	13	2 100
Mg	15 000	700	45 000

High MgSO₄ content caps the recovery

Multi-pass design can achieve ultra-high purity of recovered reagents

Process developed to recover acid from spent copper electrolyte

- Client is large vertically integrated Cu producer in Eastern Europe;
- Spent copper electrolyte is rich in Ni and Cu;
- Acid to be purified to < 50 ppm to enable reuse.

Treatment designed around 3 passes consequently treating permeates

- **UF:** Removes any remaining TSS, securing NF elements. Conditioning for NF;
- **NF-1:** 400 Da membrane at high recovery removing most of impurities;
- **NF-2:** 100 Da membrane is polishing recovered acid to required purity.

As a result, impurities reduced to < 50 ppm level

- 63% of acid recovered with impurities reduced from 8.2 g/L to 29 ppm (~log3);
- NiSO₄ up to 25 g/L in conc. for richer cake.

mg / L		UF	NF-1	NF-2	NF1+NF2	
	Feed	Perm.	Perm.	Perm.	Conc.	
Volume	100%	90%	72%	65%	25%	
Concentration						
H_2SO_4	170'000	170'000	170′000	160'000	181′000	
Cu	670	616	115	8	2'179	
Ni	7′500	7′001	806	20	25'000	
Fe	74	68	10	1	243	
Mass						
H_2SO_4	100%	90%	72% 🕻	63%	27%	
Cu	100%	83%	12%	< 0.5%	83%	
Ni	100%	84%	8%	< 0.5%	84%	>
Fe	100%	84%	10%	< 0.5%	83%	

Low-MWCO NF Membranes

Low-MWCO NF Membranes in Base-metals

Nanofiltration Membranes in Base-metals

High potential comes from using membrane technology in pyrometallurgical process

Source: AMS Technologies

Three potential membrane applications are found in SX/EW circuit

SX/EW production process and membrane applications

Source: AMS Technologies