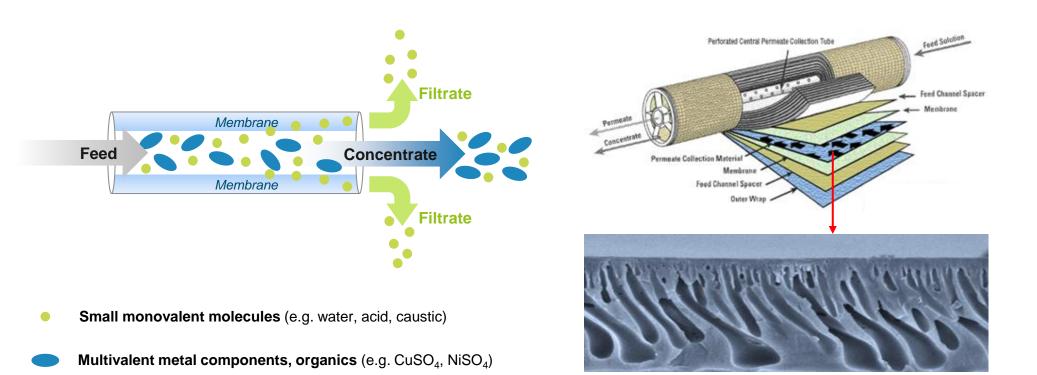

AMS Specialty Nanofiltration Membranes in Base Metals Production

- AMS Technologies is a commercial membrane manufacturer that specializes in the treatment of in-process and wastewater streams
- Following a decade of cutting edge research, our team of scientist developed a unique line of highly durable nanofiltration and ultrafiltration membrane products enabling the treatment of aggressive industrial streams with great benefits to clients

Visit us on: www.amsmembrane.com

This memorandum is strictly private & confidential and intended only for those persons it was transmitted to. The information provided herein is proprietary and should not be used without permission from the authors. The data in the memorandum provides general information regarding the company and further due diligence is required.


Nanofiltration (NF) membranes have rejection selectivity: allowing monovalent and blocking multivalent components

AMS membranes uniquely designed for metal complex separation under aggressive conditions

NF used to recover acid and concentrate metals

Spiral wound modules maximize membrane area per module

Project approach consists of several stages for better assessment and project risk mitigation

1 Initial Assessment	2 Lab Test	3 Proof of Concept	4 Pilot Plant	5 Full Scale Plant
1–2 weeks	3–4 weeks	2–4 weeks	3 months	2 months
 Client provided application form describing application details, stream composition and aims of separation; AMS experts performed theoretical analysis of expected separation. 	 Client brought stream sample for pressure cell tests with actual solution and membrane; AMS ran lab-scale test at client site. 	 Based on lab-test results client estimated total benefits and outlined business case; AMS evaluated system CapEx and OpEx costs, expected membrane life-time. 	 Pilot system installed at client facility to collect long-term performance data; Appropriate operating parameters and cleaning procedures were determined. 	 Manufacturing of full scale operating plant; Realization of full scale savings.

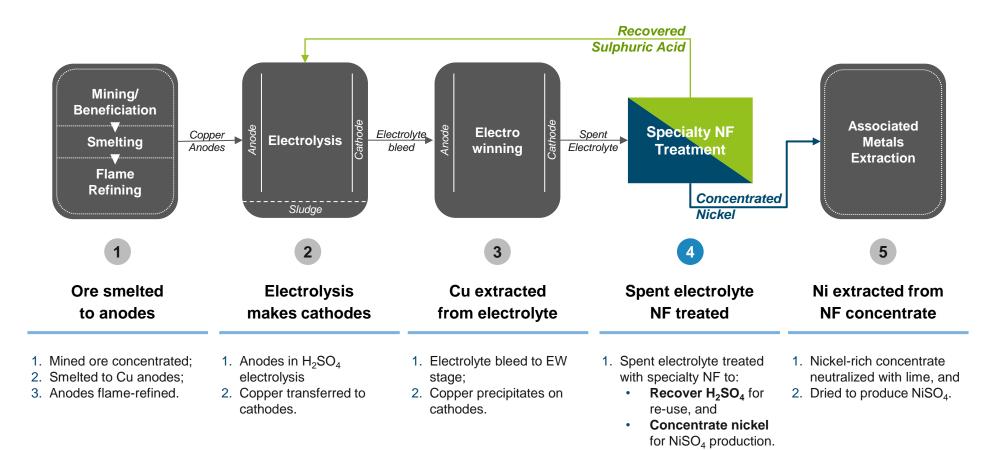
In collaboration with EPC

AMS in-house expertize and capabilities

Spent electrolyte treatment project by AMS brings in USD 2.0 M NPV and 2 years payback

NF plant scheduled for European EW unit ...

Client	Large Vertically Integrated Copper Producer
Project Region	Eastern Europe
Application	NF treatment of regenerated electrolyte at EW unit
Treatment Vol.	Approx. 20 m ³ /day
Status	Following successful feasibility tests, NF plant commissioning scheduled to 2017

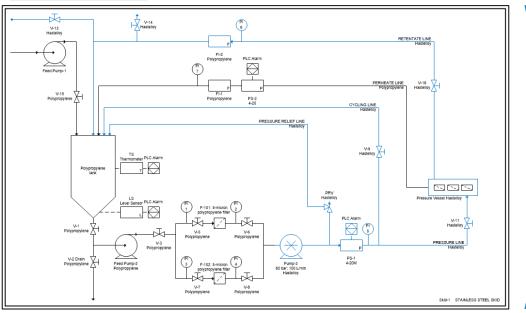

... to treat aggressive acid stream ...

Feed Solution	H₂SO₄: Cu: Ni:	284 g/L 0.20 g/L 19.6 g/L	
Treatment Highlights	H₂SO₄: Cu & Ni:	Clean 79% recovery in filtrate 96–98% recovery in concentrate, 3 times increase in concentration	
Realized Benefits	 a) acid con and c) hea Metals co a) cut neu value and 	Acid recovery enables reuse, decreasing <i>a</i>) acid consumption, <i>b</i>) transportation and handling and <i>c</i>) heating cost;	

... bringing in NPV of USD 2.0 M with 2 years payback

USD Thousands	Year 1	Year 2	Year 3
Savings calc. by client	146.7	146.7	146.7
CapEx	377.8	0	14.4
	Hastelloy plant to sustain 22% H_2SO_4		Elements replacement once in 2 years
ОрЕх	2.2 Membrane cleaning	2.2	2.2
Net CF	and electricity (233.3)	144.5	130.1
Total CF	(233.3)	(88.8)	41.3
		Y	
		NPV @ 10% : USD 1'957 K	
	·		

NF employed at base metals plant to recover acid for re-use and concentrate nickel for value addition

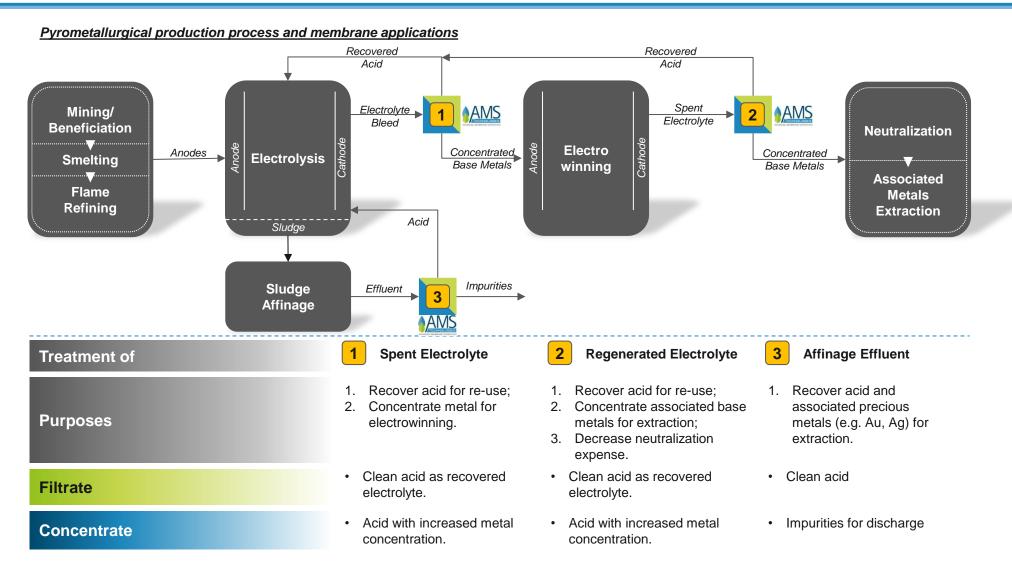


Membrane treatment brought multiple benefits: Acid re-use: lower purchase, transport, handling, heating; Ni Concentration: less neutralization, higher product value

Commercial NF system treats 20 m³/day of spent electrolyte with high H_2SO_4 content

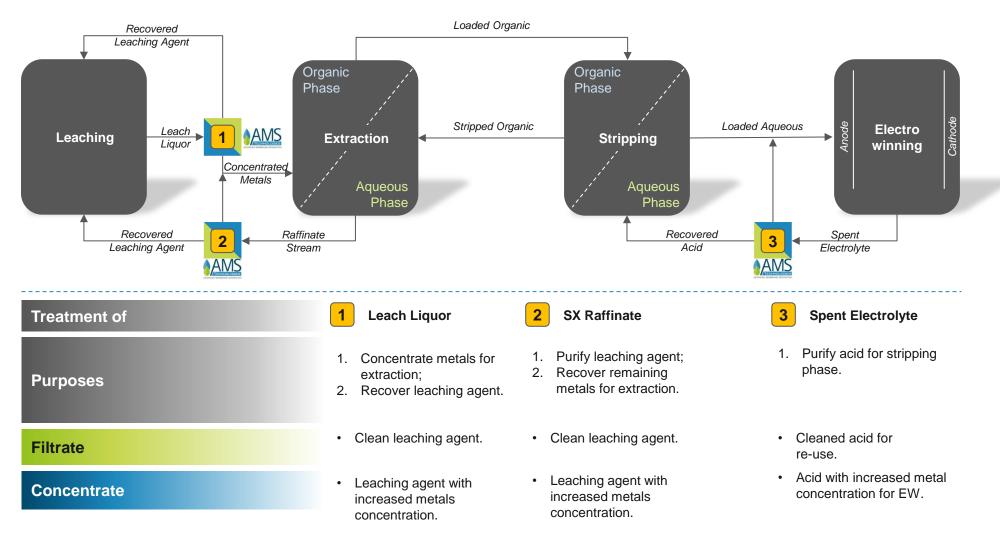
NF system was designed ...

Scheme of NF system



- Commercial scale 3 of 8-inch spiral wound elements;
- High-pressure part is made from Hastelloy (shown in blue), providing durability and stability for high acid concentrations

... with flexibility and durability in mind


- Pre-treatment stage with 5µ filters and own low-pressure pump;
- Hastelloy high-pressure pump and pressure lines for low pH operations;
- Pilot-mode option with one operating element;
- Pressure relief and cycling lines;
- **"Trucking" dimensions:** 3×3×2 m, 500 kg.

High potential comes from using membrane technology in pyrometallurgical process

Several membrane applications were defined in Solvent Extraction & Electrowinning (SX/EW) process

SX/EW production process and membrane applications

Zinc from leach solution concentrated 3 times to improve evaporative crystallization

African zinc miner uses low-MWCO membranes ...

Client	Zinc Producer
Project Region	Middle Africa
Application	NF treatment of leach solution
Treatment Vol.	Approx. 100 m³/day
Design	Single-pass with 100 Da NF membrane

... to reduce evaporator power consumption ...

Feed Solution	Zn:	25 g/L
Treatment Highlights	Zn:	3-times concentration increase with >99% mass recovery in concentrate
Realized Benefits	<i>a)</i> acid cor 2. Zinc conc	very enables reuse, decreasing nsumption, <i>b</i>) transportation and handling; entration allowed to reduce ~3 times the sumption of evaporative crystallizer

... by concentrating zinc 3 times from 25 to 75 g/L

mg / liter	Feed	Permeate	Concentrate
Volume	100%	67%	33%
Zn	25 000	257	75 000
Mg	3 200	26	9 500
Mn	1 100	34	3 300
Cu	350	7.7	1 000
рН	3.7	3.7	3.7

Electrolyte bleed of Cu-Co mine treated to recover 63% of clean acid and increase concentrate metals

African Cu-Co mine employs NF membranes ...

Client	Copper-cobalt Mine
Project Region	Middle Africa
Application	NF treatment of electrolyte bleed
Treatment Vol.	Approx. 100 m³/day
Design	Single-pass with 100 Da NF membrane

... to recover clean acid and improve precipitation ...

Feed Solution	H₂SO₄ Co:	18 g/L 330 mg/L
Treatment Highlights	H₂SO₄ Co:	17 g/L in permeate with 63% recovery 960 mg/L in conc. with 99% recovery
Realized Benefits	 Acid recovery enables reuse, decreasing a) acid consumption, b) transportation and handling; Cobalt concentration increased ~3 times improving precipitation efficiency and reagent consumption 	

... by concentrating cobalt 3 times from 330 to 960 mg/L

mg / liter	Feed	Permeate	Concentrate
Volume	100%	67%	33%
H ₂ SO ₄	18 000	17 000	21 000
Со	330	12	960
Cu	2 300	34	6 900
Fe	700	13	2 100
Mg	15 000	700	45 000